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Abstract—This report describes the method, training and
inference process for the VideoPipe Challenge on Temporal
Defect Localization. The CCTV Pipe dataset consists of long
video clips recorded inside underground pipes, with annotations
consisting of moments (i.e. timestamps) with the associated defect
at that moment. A moment can contain multiple defects. There
are a total of 16 defect classes. We train a ResNet-18 model,
initialized by weights trained on the ImageNet dataset, with the
addition of two linear layers for the final classification of a given
frame into up to 17 classes (in a multi-label setting). For the
training dataset, we sample 15 frames in a window of ±2.5s
around each annotated defect, and select additional random
frames from the video, most of which are likely to be nominal
frames. Several forms of data augmentation are performed on
the images during training. During inference, frames sampled at
1 FPS. The code can be found on Github1.

I. INTRODUCTION

The VideoPipe Challenge on Temporal Defect Localization
is concerned with detecting and classifying pipe defects that
appear in long, untrimmed videos recorded in urban pipes.
This report describes the method, training and inference pro-
cess to solve the task. Submission of results on the test set are
done through the Codalab website.

II. DATASET

The CCTV Pipe dataset consists of 346 training videos and
229 test videos, with an average duration of 545 seconds2.

A. Training and Validation Split

We split the provided training set into 300 videos for
training and 46 videos for validation, so that performance on
the validation set can be used to validate models and methods
before submission of results to the Codalab leaderboard. No
additional or external data was used, with the exception of
using weights for a ResNet-18 model trained on the ImageNet
dataset (as described in Sec. III).

B. Class Distribution

The class distribution of defects is imbalanced. Moreover,
since we consider nominal frames as an additional class, the
nominal class has a much higher occurrence in the dataset,
compared to any of the defect classes. We do not use any

1https://github.com/sthoduka/cctvpipe localization
2https://videopipe.github.io/cctvpipe/index.html

strategy to balance the class distribution of the defects. Nom-
inal frames are sampled as described in the next section.

C. Sampling

Training is performed on single images; therefore we sample
individual frames from the videos based on the following
procedure. For each annotated defect moment in a training
video, we sample 15 frames in a ±2.5s window around the
moment3, with a minimum distance of 0.1 × FPS between
sampled frames. Therefore, if there are N annotated moments
in a video, we sample 15N defect frames. In addition to sam-
pling defect frames, we also randomly sample an additional
7.5N frames from the video. Since a majority of the frames
are nominal, we expect these sampled frames to be primarily
nominal frames. Labels are assigned to each frame based on
the minimum distance to annotated moments. We label frames
which are within 5 seconds of an annotated moment as a
defect frame4. Since multiple defect classes can occur at a
given moment, the label is a multi-hot encoded vector. All
other frames are labelled as nominal.

For validation and testing, we sample frames evenly from
the video at 1 FPS. For validation, the labels are assigned in
the same way as for training.

D. Augmentation

We first resize each frame to have a height of 300 pixels,
perform random cropping to size 300x300 and finally resize
the image to 224x224 pixels. During inference, the process is
the same, except that we center crop the image to 300x300
instead. During training, additional augmentation such as
RandomAdjustSharpness, RandomAutocontrast,
RandomHorizontalFlip, RandomVerticalFlip,
RandomErasing, GaussianBlur, RandomRotation
and RandomAffine are performed. The pixel values are
then normalized to have mean = [0.485, 0.456, 0.406] and
standard deviation = [0.229, 0.224, 0.225].

3The evaluation metric allows for defect detections within 5, 10 and 15
seconds of the annotated defect; therefore, in principle the window can be
extended to ±15s.

4Similar to the sampling window, this threshold can also be extended up
to 15 seconds

https://github.com/sthoduka/cctvpipe_localization
https://videopipe.github.io/cctvpipe/index.html


III. METHOD

As the base model, we use a ResNet-18 model which was
pretrained on the ImageNet dataset (obtained from the pytorch
repositories5). The last classification layer is removed, and are
replaced by two linear layers with a Hardswish activation
and Dropout layer in between. The ResNet-18 weights are
unfrozen and allowed to train with the same learning rate as
the rest of the network.

The final layer has 17 outputs, one for each defect class and
the nominal class.

1) Training Process: We use a batch size of 512 for
training, using Stochastic Gradient Descent as the optimizer,
with momentum of 0.9 and a weight decay of 5 × e−4. We
use a One Cycle learning rate scheduler[1] with two phases,
with a maximum learning rate of 1.0. We use focal loss[2] as
the loss function (i.e. each output of the final layer is expected
to be a value between 0 and 1, with 1 as the positive class).
The labels are represented as a multi-hot encoded vector with
the positive class represented by 1, with the remaining classes
set to 0. The mean average precision (mAP) on the validation
set is monitored through the training process, and the model
with the best mAP is chosen for producing the results with
the test set. Since the validation mAP is not calculated in the
same way as mAP calculated by the test server6, the validation
mAP does not follow the same trend as the test mAP.

2) Inference Process: During inference, no data augmenta-
tion is used and, as mentioned previously, frames are classified
at 1FPS. The scores for all sampled frames are stored for both
the validation and test set.

In a second step, we construct an ROC curve on the valida-
tion scores for each class and determine the best threshold for
each class7. Since the validation set is quite small, and some
classes already occur quite rarely, one of the classes does not
occur at all in our fixed validation set. Therefore, we use a
fixed threshold of 0.1 for this class (FZ).

For the test set, we first use the identified best threshold
for the nominal class to determine if a frame is nominal or
contains a defect. If the score is below the threshold (i.e. it
contains a defect), we select the defect classes at that moment
which exceed the threshold for their respective classes. This
process results in a high number of false positives (though
it is lower than if a fixed, class-agnostic threshold is used);
therefore a more robust method of binary classification of
frames to nominal and defect should be developed.

IV. CONCLUSION

This report describes our approach for the Track on Tempo-
ral Defect Localization of the VideoPipe challenge, including
the use of the dataset, learning model used, training and in-
ference process and data augmentation. A ResNet-18 network
was used as the base-model (pretrained on ImageNet), and

5https://pytorch.org/vision/0.9/models.html#classification
6i.e. our validation mAP does not consider 3 separate temporal windows

for assigning true positives
7we choose the threshold at which we get the maximum geometric mean

of the TPR and 1 - FPR

focal loss was used due to the imbalanced dataset. Training
frames were sampled based on their proximity to defects in
addition to random frames, whereas validation and test frames
were sampled evenly at 1 FPS. The scores from the validation
set were used to determine the ideal threshold for each class.
These thresholds were used on the test set, first to determine
if a frame had any defect, and second to determine the
defects at that moment if their scores exceeded their respective
thresholds.
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